PHYSICAL REVIEW E 79, 041916 (2009)

Numerical simulation of rheology of red blood cell rouleaux in microchannels
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An elastic spring model is applied to simulate the skeletal structure of the red blood cell (RBC) membrane
and to study the dynamical behaviors of the red blood cell rouleaux (aggregates) in microchannels. The
biconcave shape of RBCs in static plasma and the tank-treading phenomenon of single RBCs in simple shear
flows have been successfully captured using this model. The aggregation and dissociation of RBCs with
different deformability have been investigated in both shear and Poiseuille flows by taking into consideration
the rheology of the cells and the intercellular interaction kinetics. It is found that the equilibrium configuration
of the rouleaux formed under no-flow condition, the motion of the rouleaux in the flows, and the rheological
behavior of individual cells in the rouleaux is closely related to the intercellular interaction strength, hydro-
dynamic viscous forces, and the deformability of the cell membrane.
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I. INTRODUCTION

Mathematical modeling of red blood cell (RBC) rheology
and aggregation in microvessels (diameter <100 wm) has
attracted growing interest recently. In the absence of external
flow, a healthy RBC is a biconcave-shaped disk with a diam-
eter of 6—-8 um and a thickness of about 2 um. The cell
membrane is highly deformable so that RBCs can pass
through capillaries of smaller diameter than the cells. Due to
the presence of certain protein (such as fibrinogen and globu-
lin) in blood plasma, RBCs may adhere together to form
stack-of-coin-like rouleaux (aggregates). It is also observed
that under pathological conditions, such as malaria, infected
RBCs become more rigid and adhesive than healthy ones.
The presence of massive rouleaux and the decrease in de-
formability of the cell membrane can impair the blood flow
in microvessels and capillaries so that the amount of oxygen
and nutrients that can be transported is severely reduced.
Theoretical investigations of RBC rouleaux have been partly
reviewed in [1,2]. Recent numerical studies on the RBC ag-
gregation have taken into account the rheological aspect and
dynamic motion of the cells in a flow [3-6]. A series of
numerical studies have been carried out on the aggregates of
two cells [3] and multiple cells [4—6]. The results suggested
that rheological properties of the cells had significant effects
on the dynamics of the aggregates [3] and the aggregation
was linked to the shear rate dependent viscosity of the blood
[5]. Very recently, a lattice Boltzmann method was devel-
oped by Zhang et al. [6] to simulate the formation and dis-
sociation of four-cell rouleaux in shear flows. They showed
that the configuration of the rouleaux formed under no-flow
condition and the behaviors of the aggregates in shear flows
depended strongly on the strength of the intercellular inter-
action and shear rate applied. These studies indicate that the
aggregation of RBCs plays a significant role in the rheology
and flow characteristics of blood. However, the rheological
behavior of the aggregates related to the deformability of the
cell membrane has been studied only to a limited extent.
Moreover, blood flow in the microvessels is better approxi-
mated by a Poiseuille flow than a shear flow, which makes
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the study of RBCs in Poiseuille flows more physiologically
realistic. In addition, although some important factors for the
RBC aggregation and dissociation have been investigated
[3-6], the determinant factors are complex and not well es-
tablished.

Previous numerical studies depicted elastic properties of
the RBC membrane by the Mooney-Rivlin strain energy
function [4,5] or Neo-Hookean strain energy function [3,6]
so that the deformability of the cells was included. However,
the general organization of the RBC membrane has been
well characterized. It has been shown that the human RBC is
an inflated closed membrane filled with a viscous fluid called
cytoplasma. The RBC membrane is a two-layer structure
with one layer the phospholipid bilayer plus the attached
glycocalyx and the other layer the network of proteins fas-
tened to the bilayer [7,8]. The second layer is also called the
skeleton of the membrane. The skeleton is a network of spec-
trin hexagons which allow the RBC to be highly deformable
and elastic [9]. Due to its special structure, the RBC mem-
brane has strong resistance to changes in area or volume and
shear deformation [8]. Therefore, it is of significance to take
into consideration the structure of the RBC membrane skel-
eton in the study of RBC aggregations. In this paper, a re-
cently developed elastic spring model [10] based on the
structure of the RBC membrane skeleton is adopted to de-
scribe the deformability of the RBCs, for this model is a
more accurate representation of the cell membrane.

The goal of the present study is twofold. First, we aim to
develop a numerical approach incorporated with the elastic
spring model to study the rheology of the RBCs. Second, we
focus on investigating the effect of cell mechanical proper-
ties, hydrodynamic forces, and strength of the intercellular
interaction on the dynamical motion of the two-cell rouleaux.
To this purpose, shear and Poiseuille flows including the
RBC with fluid-cell and cell-cell interactions have been stud-
ied in two-dimensional (2D) microchannels using the nu-
merical method developed and the simulation results are pre-
sented in this paper.
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FIG. 1. The elastic spring model of the RBC membrane.

II. THEORY AND METHODS

Under the assumption that blood plasma is an incompress-
ible Newtonian fluid, the governing equations for the blood
flow in microvessels are the Navier-Stokes equations

1%
p{a—l;+u-Vu}=—Vp+,uAu+f, (1)

V.-u=0, (2)

where u(x,7) and p are the fluid velocity and pressure, re-
spectively, anywhere in the flow, p is the fluid density, and w
is the fluid viscosity, which is assumed to be constant for the
entire fluid. The body force term f(x,7) is introduced to ac-
count for the force acting on the fluid or structure interface.
In this paper, the Navier-Stokes equations for fluid flow
has been solved by a finite element technique. The aggrega-
tion and dissociation of RBCs in shear flows has been simu-
lated by combining (1) a two-dimensional elastic spring
model to describe the RBC membrane; (2) a Morse-type po-
tential function to model the intercellular force; and (3) an
immersed boundary method based on the Navier-Stokes
equations to deal with the motion of the deformable cells.

A. Elastic spring model for the RBC membrane

The deformability and the elasticity of the RBC is due to
the skeletal architecture of the membrane. A two-
dimensional elastic spring model [10] is considered in this
paper to describe the deformable behavior of the RBCs.
Based on this model, the RBC membrane can be viewed as
membrane particles connecting with the neighboring mem-
brane particles by springs, as shown in Fig. 1. Elastic energy
stores in the spring due to the change in the length [ of the
spring with respect to its reference length [, and the change
in angle 6 between two neighboring springs. The total elastic
energy of the RBC membrane, E=E;+E,, is the sum of the
total elastic energy for stretch or compression and the total
elastic energy for bending which, in particular, are the fol-
lowing:

N
ki (li—lo)2
E=->("— 3
’ 221 . (3)
and

k N
E,= Ebz tan(6,2). (4)

i=1

In Egs. (3) and (4), N is the total number of the spring ele-
ments and k; and k, are spring constants for changes in
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length and bending angle, respectively. Based on the prin-
ciple of virtual work, the elastic spring force acting on the
membrane particle i is then
JE
or;’

i )
with r; as the position of the ith membrane particle. For
simulation purposes, this elastic force is a portion of the
body force term in the Navier-Stokes equations.

B. RBC aggregation model

The underlying mechanism of RBC aggregation remains
unclear at this time (bridging versus depletion). Descriptions
of the bridging model and the depletion model can be found
elsewhere [11,12]. Here we adopt a Morse-type potential
function proposed by Liu er al. [4] for RBC adhesion phe-
nomena to describe the intercellular energy between two
cells

$(r) = D [e*Prom) — 2ePromr] (6)

where r is the distance considered, r, and D, are reference
distance and surface energy, respectively, and S is a scaling
factor. The intercellular force is then f(r)=—d¢/dr. The
Morse-type potential function is chosen because of its sim-
plicity. An accurate representation of intercellular interaction
force is not central to this paper. Employing this potential
function, the intercellular force is a weak depletion attractive
at far distances and strong repulsive at near distances which
qualitatively represents the characteristics of the interaction
between the RBCs.

C. Immersed boundary method

The immersed boundary method developed by Peskin
[13] is employed in this paper because of its distinguish fea-
tures in dealing with the problem of fluid flow interacting
with a flexible fluid or structure interface. Over the years, it
has demonstrated its capability in the study of computational
fluid dynamics including blood flow. Based on the method,
the boundary of the deformable structure is discretized spa-
tially into a set of boundary nodes. The force located at the
immersed boundary node X affects the nearby fluid mesh
nodes x through a 2D discrete & function D,(X-x),

F(x)=> F(X)-Dy(X-x) for |X-x|=2r, (7)

where £ is the uniform finite element mesh size and

Dj(X = x) = §,(X; = x1) 6(X; — x,), (®)
with the one-dimensional (1D) discrete & functions being
1 .
—{1 +cos(ﬂ>] for |z| =2h
5,(2) =1 4h 2h ()
0 for |z| > 2h.

The movement of the immersed boundary node X is also
affected by the surrounding fluid and therefore is enforced by
summing the velocities at the nearby fluid mesh nodes x
weighted by the same discrete 6 function,
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FIG. 2. (a) An example of the history of the change in the elastic
energy of the RBC membrane. (b) Two-dimensional RBC shapes
obtained by reducing the area from a circle using the elastic model.
Elliptic shape: s*=0.9; biconcave shape: s*=0.481. The lines corre-
spond to the RBC obtained from the elastic model, while the circles
show the equilibrium RBC shape in a static blood plasma.

U(X)=> hPu(x)-D,(X-x) for [X-x|=2hr (10)

After each time step At, the position of the immersed bound-
ary node is updated by

Xpar= X, + AfU(X,). (11)

III. NUMERICAL RESULTS AND DISCUSSIONS

In this paper, the RBCs are suspended in blood plasma
which is assumed to be incompressible, Newtonian, and has
a density of p=1.00 g/cm® and a dynamical viscosity of u
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FIG. 3. (a) Equilibrium RBC inclination angle as a function of
area reduction ratio. (b) Tank-treading frequency f as a function of
shear rate in a fluid with viscosity 23cp.

=0.012 g/(cms). The viscosity ratio which describes the
viscosity contrast of the fluid inside and outside the RBC
membrane is fixed at 1.0. The fluid domain is a two-
dimensional horizontal channel. For all computations, the
grid resolution for the computational domain is 80 grid
points per unit length with the unit length equal to 10 um.
The reference distance r, in Eq. (6) is chosen to be 0.49 um
due to the limitation of the grid size. This distance can be
further decreased provided a finer mesh grid is used. The
scaling factor is picked as =80 wm™'. The energy constant
D, can be chosen differently so that a weak or strong inter-
cellular interaction is introduced. To obtain a Poiseuille flow,
a constant pressure gradient is prescribed as a body force. To
produce a linear shear flow, a Couette flow driven by two
walls at the top and bottom which have the same speed but
move in directions opposite to each other is applied to the
suspension. Different shear rate can be obtained by adjusting
the wall speed. In addition, periodic boundary conditions are
imposed at the left and right boundaries of the domain.
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FIG. 4. Equilibrium configuration of RBC rouleaux with difter-
ent intercellular strength. (a) D,=0; (b) D,=1.0X 107> wuJ/m?; (c)
D,=1.0X10"" wJ/m% (d) D,=55%X10"" wJ/m? (e) D,
=1.0 wJ/m?, and (f) D,=4.5 uJ/m> Solid lines: k;=k,=1.0
%1072 N m; dashed lines: k;=k,=1.0X 107> N m.

A. Shape change of a RBC

In many cases of interest, the two-dimensional model ap-
proximates the shape of the RBC by the characteristic cross
section in the plane that is parallel to the flow direction if the
cell were in shear flow. In previous studies, the shape of the
RBC was either taken as an ellipse [3,14] or prescribed by an
equation [4-6] suggested by Evans and Fung [15] for a bi-
concave shape. In this paper, the shape change of a RBC is
simulated using the elastic spring model based on minimum
energy principle. Initially, the RBC is assumed to be a circle
with a radius of 2.8 wm. The circle is discretized into N
=76 membrane particles so that 76 springs are formed by
connecting the neighboring particles. The shape change is
stimulated by reducing the total area of the circle s, through
a penalty function [10],

k(s—s,\>
r.=={—= 12
K 2( se )9 ( )

and the total elastic spring energy E is modified as E+T,,
and the force acting on the ith membrane particle now is

14 16 18 20 22 2 26 28

®) X (1m) @ X (1m)

FIG. 5. Representation snapshots for the evolution of rouleaux
of two cells in a shear flow with y=100 s7!. (a) =0, (b) yr=1, (c)
yt=2, and (d) yt=5. The intercellular interaction between the two
cells is weak with D,=1.0X 1073 uJ/m?. Solid lines: k;=k,=1.0
X 10712 N m; dashed lines: k;=k,=1.0X 10" N m.

IE+T))
ar;,

l

(13)

i

where s and s, are the time-dependent area and the equilib-
rium area of the RBC, respectively. When the area is re-
duced, each RBC membrane particle moves according to the
following equation of motion:

mr,+ 'yl'l:Fl (14)

Here, () denotes the time derivative and m and 7y represent
the mass and the viscosity, respectively, of the RBC. The
position r; of the ith membrane particle is solved by a dis-
crete analog of Eq. (14) via a second-order finite difference
method. The total elastic energy stored in the membrane de-
creases as the time elapse. The final shape of the RBC shown
in Fig. 2 is obtained as the total elastic energy is minimized.

The parameters in the simulation of the shape change of
the RBCs are set as follows: the membrane mass m=2.0
X 10™* g and the membrane viscosity y=8.8 X 10~7 N s/m.
By taking into consideration the nonextensible property of
the membrane, the spring constants are set to be 1.0 10713
and 1.0X 107> N m, with k;=k, for the more deformable
cells (e.g., healthy cells) and less deformable cells (e.g., in-
fected cells), respectively. The penalty coefficient k, is k,
X 10*. The bending constant is closely related to the rigidity
of the membrane. A higher k; results a less deformable cell.
In Fig. 2, an initial circular shape is transformed into its final
stable shape associated with a minimal energy for a given
area ratio s*=s,/s, regardless the above choice of k. It is
found that when the area reduction ratio s* = 0.8, biconcave
shapes are obtained. When s*>0.8, the final stable shape is
close to ellipse. The biconcave shape obtained for s*
=0.481 resembles the normal physiological shape of the
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FIG. 6. Representation snapshots for the evolution of rouleaux
of two cells in a shear flow with y=100 s7!. (a) =0, (b) y=5, (c)
yt=10, (d) yt=15, () y=20, and (f) yt=77.8. The intercellular
interaction between the two cells is moderate with D,=1.0
x 107" uJ/m?. Solid lines: k;=k,=1.0X 10" N m; dashed lines:
kj=k,=1.0X10"13 N m.

RBC very well. The biconcave cells obtained with s
=0.481 will be used for the simulation of the two-cell rou-
leaux.

After obtaining the shape of the RBCs for a given area
reduction ratio, such RBC shape is put into a 20X 20 um?
domain to obtain its equilibrium shape in a static plasma. For
the results shown in this paper, the coupled RBC motion and
fluid flow is solved by the immersed boundary method based
on the Navier-Stokes equations with the force given in Eq.
(13). The elastic force induced by the springs is substituted
into the Navier-Stokes equations as a body force. The equi-
librium shapes shown in Fig. 2 demonstrate that the RBCs
simulated by elastic spring model are stable in blood plasma.

B. Simulation of single cell

Tank treading of the RBC membrane in a simple shear
flow has been observed experimentally by Fischer et al. [7]
and many others, e.g., [16]. It was observed that at equilib-
rium, although the global shape of the RBC is stationary, the
membrane circulates along the contour such as a tank tread
with the cell orientating to a fixed inclination angle. It was
also found that the tank-treading frequency depends on the
shear rate and the viscosity of the surrounding viscous fluid
[7]. In Fig. 3, the elastic spring model is validated by com-
paring with previous experimental data [7], theoretical Keller

FIG. 7. Representation snapshots for the evolution of rouleaux
of two cells in a shear flow with y=100 s~!. (a) =0, (b) y=5, (c)
vt=10, (d) yt=15, (e) yt=20, and (f) yr=75.8. The intercellular
interaction between the two cells is strong with D,=1.0 uJ/m?.
Solid lines: k;=k,=1.0X10"12 N'm; dashed lines: k=k,=1.0
X107 N m.

and Skalak model [17], and simulations [18,19] for the incli-
nation angles and tank-treading frequencies of single RBCs
in shear flows. From Fig. 3, it can be seen that our simulation
results agree very well with those in [18] for the inclination
angles. It is also noted that our results for the tank-treading
frequency has the same linear behavior as that of the experi-
ment [7] and is with less discrepancy than the simulation
results obtained by Li e al. [19]. We also keep track of the
cell area and perimeter during the simulations. The change is
less than =0.1% in the area and less than =0.5% in the
perimeter.

C. Simulation of two-cell rouleaux

It has long been recognized that RBCs can aggregate to
form stacks-of-coins-like rouleaux (aggregates). In this sec-
tion, we first investigate the formation of the RBC rouleaux
under no-flow condition to eliminate the influence of the
hydrodynamic viscous forces. Two biconcave-shaped RBCs
with intercellular forces are placed in static blood plasma for
them to aggregate as shown in Fig. 4(a). The simulations
have been done in a 20X20 um domain. The distance be-
tween the centers of the two RBCs is 3.1 um so that the
intercellular force is attractive initially. As time elapses, the
RBCs move toward each other until the balance of the attrac-
tive force and the repulsive force is reached. The equilibrium
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FIG. 8. Snapshots of the dissociation of RBC rouleau in a shear
flow with y=750"" for the case of D,=1.0X 1072 uJ/m> The
membrane constants k;=k,=1.0X 107> N'm. The time instants
are: (a) r=0 (initial state), (b) y=1.5, (c) y=3.75, and (d) yr
=5.625.

shape of the rouleaux as a function of D, are plotted in Figs.
4(b)-4(f) for two types of cells with different spring con-
stants: more deformable cells with k,=k,=1.0X 107" N'm
and less deformable cells with k,=k,=1.0X 107" N m. The
equilibrium shapes of the cells clearly demonstrated that the
intercellular interaction is a crucial factor for the deformation
of the RBC cells in aggregation process. We also observed
that the more rigid cells display concave shapes for all inter-
cellular strengths. For the more deformable cells, the cells
display concave shapes at weak intercellular strengths, flat-
tened shapes at moderate intercellular strength, and convex
shape at strong intercellular strength. Moreover, we observe

: X(um) ="

FIG. 9. Snapshots of dissociation of the RBC rouleau in a shear
flow with y=350"" for the case of D,=1.0Xx1072 uJ/m>. The
membrane constants k;=k,=1.0X 107> N'm. The time instants
are: (a) r=0 (initial state); (b) y#=1.75; (¢) y=3.5; (d) vt=7.

curved contact surfaces between two cells at lower intercel-
lular energies and flat contact surfaces at higher D, values.
Note that Zhang et al. [6] also did a similar simulation on
four-cell rouleaux without consideration of the effect of the
deformability and the above results qualitatively agree with
theirs.

The behaviors of the RBC aggregates in flows are more
complex than single RBCs for the interaction between the
cells affects the flow rheology significantly. The rouleaux
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FIG. 10. Snapshots of dissociation of the RBC rouleau in a
shear flow with y=100"" for the case of D,=1.0X 1072 uJ/m>.
The membrane constants k;=k,=1.0X10"'> N'm. The time in-
stants are: (a) =0 (initial state); (b) y=5; (c) =20.6; (d) »
=30.1.

formed under no-flow condition, as described above, are
placed in shear flows to investigate the motion and dissocia-
tion of the aggregates. The flow domain considered is a
40X 20 um? channel. The rouleaux are located at the center
of the domain initially. As the flow starts, the rouleaux move,
deform, or even detach depending on the strength of the
hydrodynamic viscous force, intercellular force, and the me-
chanical properties of the membrane. Results at higher con-

PHYSICAL REVIEW E 79, 041916 (2009)

20
E
= =1
Ny -
(@) ° X (1 m) 40

(° X (1 m) 40

FIG. 11. Snapshots of dissociation of RBC rouleau in a Poi-
seuille flow with Re=3.4 for the case of D,=1.0X 107! uJ/m>.
The membrane constants k;=k,=1.0X 107> N'-m. The time in-
stants are: (a) t=0 (initial state); (b) =2 ms; (c) t=2.5 ms; (d) ¢
=5 ms.

stants k;=k,=1.0X107"> N'm and lower constants k=k,
=1.0X 107" N m are shown in the same plot in Figs. 5-7
for easy comparison. In addition, two points with one on the
upper less deformable cell surface and the other on the lower
more deformable cell surface are marked to show the tank-
treading motion of the cell membrane. In these three figures,
we focus our attention on the deformation, configuration, and
the tank treading of the cells. Therefore, only the shape be-
havior of the RBCs is provided.

Figure 5 shows the breakage of the rouleaux when the
intercellular force is weak (D,=1.0X 1073 uJ/m?). The rou-
leau formed under no-flow condition in this case is loose
with the deformation of the RBCs being small. A shear flow
with a shear rate y=100 s~! is applied to the rouleaux. Sev-
eral snapshots are shown for the position and the shape of the
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FIG. 12. Snapshots of dissociation of RBC rouleau in a Poi-
seuille flow with Re=0.83 for the case of D,=1.0X 107" uJ/m>.
The membrane constants k;=k,=1.0X 107> N'm. The time in-
stants are: (a) r=0 (initial state); (b) /=2 ms; (c) t=2.5 ms; (d) ¢
=5 ms.

rouleaux at time =0 and three time instants yr=1, 2, and 5.
The assemblies detach very quickly to two separate cells.
The cells moved to the same direction as the nearby wall
with an inclination angle. The two marked points on the cell
surface clearly show that the membrane undergoes a tank-
treading motion similar to the single cell case. The elasticity
of the cell membrane does not have much effect on the be-
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FIG. 13. Snapshots of dissociation of RBC rouleau in a Poi-
seuille flow with Re=0.17 for the case of D,=1.0X 107! uJ/m2.
The membrane constants k;=k,=1.0X 107> N'm. The time in-
stants are: (a) r=0 (initial state); (b) r=3 ms; (¢c) t=12 ms; (d) ¢
=23.4 ms.

havior of the rouleaux when the intercellular force is weak.

When the intercellular force is moderate (D,=1.0
X 107! wJ/m?), the deformation of the RBCs in the rou-
leaux is also small. When a shear flow with a shear rate y
=100 s~!is applied to the rouleaux, the two cells slide to the
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FIG. 14. Snapshots of dissociation of RBC rouleau in a Poi-
seuille flow with Re=3.4 for the case of D,=1.0 uJ/m?. The mem-
brane constants k;=k,=1.0X 10""3 N m. The time instants are: (a)
t=0 (initial state); (b) r=1 ms; (c) r=5 ms; (d) =141 ms.

opposite direction depending on the direction of the shear
flow. However, the hydrodynamic viscous force is not strong
enough to break the rouleaux completely. The rouleaux ro-
tate like a single body, keeping the relative position of the
two cells unchanged. In Fig. 6, several snapshots are shown
for the position and the shape of the rouleaux at time t=0
and five time instants yr=5, 10, 15, 20, and 77.8. Note that
the more deformable cells rotate faster than the less deform-
able cells. Also, the rotation velocity of the rouleau formed
by the more deformable cells is almost constant, while that
of the less deformable cells are not. Tank treading has been
found for both types of the cells with the velocity being
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FIG. 15. Snapshots of dissociation of RBC rouleau in a Poi-
seuille flow with Re=0.83 for the case of D,=1.0X 107! uJ/m2.
The membrane constants k;=k,=1.0X107'> N'm. The time in-
stants are: (a) r=0 (initial state); (b) t=0.6 ms; (c) t=1.6 ms; (d)
t=2.5 ms.

faster for less deformable cells, and the overall tank-treading
velocity is slower compared to the weak strength case.
When a strong intercellular force is introduced (D,
=1.0 uJ/m?), the RBCs experience large deformation dur-
ing the process of rouleaux formation. Moreover, the rouleau

041916-9



WANG et al.

formed is compact with the biconcave shape completely lost
for the more deformable cells. Figure 7 shows a shear flow
with a shear rate y=100 s~! being applied to the rouleaux
and several snapshots for the instant position of the rouleaux
in the flow. For the more deformable cells, the contact sur-
face between the two cells becomes highly curved as the
flow starts. Both types of aggregates do not break and roll
almost like a single rigid body. Consequently, the tank-
treading motion of an individual cell in the rouleau is not
present any more. The trace of a point on the cell surface
indicates almost no tank treading of the membrane.

To examine the hydrodynamic effect on cell behavior, we
place the two-cell rouleaux formed at D,=1.0
X 1072 uJ/m? in shear flows with varying shear rates (Figs.
8-10). The cells have the bending and stretching or com-
pressing constants k;=k,=1.0X 107> N m. Several snap-
shots are shown for the position and the shape of the rou-
leaux at time t=0 and three other time instants. When 7y
=750 s7! is applied to the rouleau, the assembly detaches
very quickly to two separate cells and arranges at parallel
layers. The cells moved to the same direction as the local
fluid with an inclination angle. This angle is found to be the
same as in the tank treading. The behavior of the rouleau in
a flow with shear rate y=350 s~! (Fig. 9) is similar to the
y=750 s~! case, however with a slower detaching of the
cells. In a flow with y=100 s~' (Fig. 10), unlike the other
two cases, the rouleau does not break. As the flow starts, the
cells quickly slide depending on the flow direction. Then the
cells rotate together almost like a single rigid body. In Figs.
8-10, the vector field of the flow velocity is also provided in
the same plot. As the cell moves, the fluid flow around the
cells is not linear shear flow because of the interaction be-
tween the cells and the plasma.

To study the dynamical RBC behavior in Poiseuille flows,
the two-cell rouleaux formed at intercellular strength D,
=1.0Xx 107" uJ/m? are placed in Poiseuille flows with vary-
ing Reynolds numbers at the inlet. The flow domain consid-
ered is a 40 X 20 um? channel with the rouleaux locating at
the center of the domain initially. In the flow, the rouleaux
move with the plasma while experiencing deformation. The
rouleaux can even become individually dispersed depending
on the hydrodynamic viscous force and the mechanical prop-
erties of the membrane. Results at three different inlet Rey-
nolds numbers Re=3.4, 0.83, and 0.17 are shown in Figs.
11-13 for the evolution of the rouleaux formed with more
deformable cells (k;=k,=1.0X107"* N'm). At the two
higher inlet Reynolds numbers, the rouleaux can be dissoci-
ated into two separate cells. The higher the Reynolds num-
ber, the faster the disaggregation. However, when the inlet
Reynolds number is 0.17, the hydrodynamic force produced
by the flow is not strong enough to break the assembly. An-
other experiment with the inlet Re=3.4 is carried out on the
rouleau with a stronger intercellular strength D,
=1.0 wJ/m? (Fig. 14). Compared to the case shown in Fig.
11, the rouleau simply deforms and rotates in the flow and
cannot be broken due to this strong interaction. In Fig. 15, a
rouleau formed with rigid cells (i.e., strong bending constant
k;=k,=1.0X10""* N m) is placed in a Poiseuille flow with
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inlet Re=0.83. The interaction force is D,=1.0
X 107" wJ/m?, the same as in Fig. 11. It is noted that the
cells with weak bending constant (Fig. 11) are more difficult
to break in the flow. On the other hand, the assembly with
strong bending (Fig. 15) is more likely to disaggregate into
individual cells. In Figs. 11-15, the vector fields provided for
the fluid flow clearly show the effect of the cell-cell and
cell-fluid interactions on the flow rheology. It is also noted
that the parachute shape of RBCs, which has been observed
under physiological conditions, has been found in some of
the above Poiseuille flows (see Figs. 11, 12, and 14).

The above simulations show that in microchannels, the
behaviors of RBC rouleaux are strongly related to the de-
formability of the membrane, the strength of the intercellular
interaction, and the hydrodynamic force induced by the flow.
Experiments show that RBC rouleaux can be broken into
individual cells at higher hydrodynamic forces, which are
induced by higher shear rate in shear flow or higher Rey-
nolds number in the Poiseuille flow, or weak intercellular
strength. It is also noted that in the Poiseuille flows, increase
in the rigidity of the cell membrane will facilitate the disas-
sociation of the rouleaux. It indicates that the rheological
motion of the RBCs is the result of a balance between ag-
gregating and dissociating forces.

IV. CONCLUSIONS

In summary, a numerical model is developed to investi-
gate the aggregation of RBCs and the dissociation of the
RBC rouleaux in microvessels. An elastic spring model is
adopted to describe the cell membrane. Based on the avail-
able mechanical properties of RBCs, cells have been studied
using a two-dimensional approximation. The equilibrium
configuration of rouleaux formed under the action of inter-
cellular interaction is related to the strength of the intercel-
lular force and the deformability of the cell membrane. The
cells in the rouleaux exhibit the typical biconcave shapes,
flatten shapes, or even convex shapes. In shear and Poiseuille
flows, such a rouleaulike aggregate will rotate or to be sepa-
rated, depending on factors such as shear stress, the strength
of the intercellular interaction and the deformability of the
membrane. These factors are investigated in this paper for
their effects on the deformation and motion of RBC rouleaux
in channel flows, and the results show the significant influ-
ence of these factors on the rheological properties and mo-
tion of the RBCs in microvessels. The tank-treading behavior
has also been found for the individual cells in the rouleaux
with weak or moderate intercellular strength. In addition, the
numerical results are quantitatively/qualitatively similar to
experimental observations and other investigators’ findings,
thus showing the potential of this numerical algorithm for
future studies of blood flow in microcirculation.
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